
Localizing GTK+

Theppitak Karoonboonyanan
thep@linux.thai.net

January 2004

Abstract

This paper summarizes information gathered by the author during con-
tributing to Pango and GTK+ projects and developing own Thai modules
[1] [2]. It is by no means a complete reference nor a universal guide for all
languages. The author just hopes it would be useful for other localizers.

GTK+ 2 is more than internationalized. It is indeed a multilingual sys-
tem. Language supports are modularized for input methods, text drawing
and language processing. This paper describes the framework in localizer’s
point of view.

1 GTK+ I18N Framework

1.1 I18N or Multilingual?

Like other modern Unicode-based toolkits, GTK+ [3] is more than internation-
alized. In fact, it is multilingual, that is, it supports multiple languages and
scripts at a time, instead of just the locale’s language and script like traditional
I18N. This is simply the nature of Unicode, where characters of all scripts in the
world are encoded in a single code table. To support Unicode means to support
all scripts.

1.2 GTK+ I18N Framework

GTK+ multilingual support is acheived by dynamic I18N. That is, it is modu-
larized so that language support modules are dynamically loaded on demand,
rather than trying to cover everything in a single place. As a result, local-
ization is flexible, and side-effect bugs between different language supports are
minimized.

There are two I18N frameworks in GTK+ 2:

• GTK+ IM – dynamically selectable input method framework based on
pure GTK+ API

• Pango – a quality text layout engine, which analyzes and shapes text
portions by loading and calling corresponding modules as per their Uni-
code ranges. There are two kinds of Pango engines: language engines and
shaping engines.

1

2 GTK+ Input Method Modules

2.1 GTK+ Input Method Modules

As a cross-platform toolkit, instead of just relying on platform input methods,
GTK+ 2 defines its own framework using pure GTK+ API’s. This provides high-
level abstraction, making input methods development a lot easier than writing
XIM servers. (GTK+ can still use the several existing XIM servers through
the imxim bridging module, anyway.) Besides, the input methods developed
become immediately available to GTK+ in all platforms it supports, including
XFree86, Windows, and GNU/Linux framebuffer console. The drawback is that
the input methods cannot be shared with non-GTK+ applications.

The Internet/Intranet Input Method Framework (IIIMF) [4] defined and de-
veloped by OpenI18N.org allows input methods to be shared among several
kinds of applications, or even across platforms connected in the same network.
The details of IIIMF is beyond the scope of this paper, anyway.

2.1.1 Client-Side Coding

A quick example for client-side code for text input using GTK+ IM from which
you can study is the GtkEntry itself. GTK+ IM clients usually handle text
entries using the GtkIMMulticontext class, which provides dynamic IM se-
lection via menu items queried from GTK+ IM modules list.

Technically speaking, GtkIMMulticontext is derived from the GtkIM-
Context base class, which provides interface for all IM context implementa-
tions. When user selects a new input method menu item, the corresponding
IM context subtype is created by calling the im module create() function of
the corresponding module. The newly created IM context becomes the slave of
GtkIMMulticontext and takes care of all the interfaces for it.

In client’s point of view other than the construction process described above,
all IM contexts are accessible via the GtkIMContext interface. An important
interface for text input is the gtk im context filter keypress() function.
The client would call it upon key press to pass the event to the input method.
If it returns TRUE, that means the input method has consumed the event, and
the client should discard it.

There are also interfaces for the other direction. Input method can call the
client for some action by emitting GLib signals, for which the handlers may be
provided by the client by connecting callbacks to the signals:

“preedit changed”

Uncommitted (preedit) string is changed. Client may update the display,
but not the input buffer, to let user see the keystrokes. Preedit string can
be retrieve using the gtk im context get preedit string() function.

“commit”

Some characters are committed from IM. The committed UTF-8 string
is also passed as argument, from which the client can take into its input
buffer.

“retrieve surrounding”

2

The IM wants to retrieve some text around the cursor. Client should
return the context string as much as possible to the IM by using the
gtk im context set surrounding() function.

“delete surrounding”

The IM wants to delete text around cursor. Client should delete text
portion around the cursor as requested.

We shall return to these signals later when we talk about input method
implementation.

2.1.2 IM Implementation

GTK+ input methods are implemented in loadable modules providing following
entry functions:

void im module init(GTypeModule *module)

initialization – normally registers the IM context type (as a GtkIMCon-
text derivative)

void im module exit()

module clean-ups upon unloading

void im module list(const GtkIMContextInfo **ctxs, int *n)

lists information of all IM’s provided in the module

GtkIMContext *im module create(const gchar *context id)

creates GtkIMContext instance

The main task of the IM module is to define new IM context class or classes
by extending the GtkIMContext base class and override some virtual func-
tions. (Please see GObject Reference Manual [5] for new type derivation.) Usu-
ally, a virtual function always overridden is filter keypress(), which has
following prototype:

gboolean (*filter_keypress) (GtkIMContext *context,
GdkEventKey *event);

The function is to be called by the client upon key press event. It can determine
proper action to the key and return TRUE if it means to consume the event or
FALSE to pass the event back to the client.

Some IM (e.g. CJK and European) may do a stateful conversion by incre-
mentally match the input string with predefined patterns until unique pattern is
matched before committing the converted string. During the partial matching,
the IM emits the "preedit changed" signal to the client for every change, so
that it can update the preedit string to the display. Finally, to commit charac-
ters, the IM emits the "commit" signal, associated with the converted string as
argument, to the IM context. Thus, the client must handle the "commit" signal
to catch the input text.

Some IM (e.g. Thai) is context-sensitive. It needs to retrieve text around
the cursor to determine appropriate action. This can be done through the

3

"retrieve surrounding" signal. The IM calls gtk im context get surrounding()
function to get the context. The function would then emit the signal to the
IM context, which should handle it with a function supplied by the client.
The handler should read client’s text buffer as requested and reply using the
gtk im context set surrounding() function call.

In addition, the IM may request to delete some text from the client’s input
buffer (as required by Thai advanced IM which also corrects the illegal se-
quences, for example). This can be done via the "delete surrounding" signal,
which is emitted from the IM by calling the gtk im context delete surrounding()
function. So, the client should also catch the signal to support the case.

3 Pango Engines

3.1 Pango Overview

Pango [Gk pan all + Jap go language] [7] is a multilingual text layout engine
designed for quality text typesetting. Although it is the text drawing engine of
GTK+, it can also be used outside GTK+ for other purposes, such as printing
[8].

This section will discuss the bird-eye view of Pango as necessary for localiz-
ers. You may consult Pango reference manual [9] for deeper details.

3.1.1 PangoLayout

At the high level, Pango provides the PangoLayout class which takes care
of typesetting text in a column of given width, as well as other information
necessary for editing, such as cursor positions. Its features may be summarized
as follows:

1. Paragraph Properties.

• indent

• spacing

• alignment

• justification

• word/char wrapping modes

• tabs

2. Text Elements.

• get lines and their extents
• get runs and their extents
• character search at (x, y) posi-

tion

• character logical attributes
(is line break, is cursor pos,
etc.)

• cursor movements

3. Text contents.

• plain text • markup text

4

3.1.2 Middle-level Processing

Pango also provides access to some middle-level text processing functions, al-
though most clients in general do not use them directly. To grab a brief under-
standing of Pango internal, let’s discuss some highlights.

There are three major steps for text processing in Pango1:

1. pango itemize()

breaks text into chunks (items) of consistent direction and shaping engine.
This usually means chunks of texts of the same language with the same
font. Each chunk is represented by a PangoItem instance, which asso-
ciates with it the corresponding shaping and language engines through its
PangoAnalysis member.

2. pango break()

determines possible line, word and character breaks within the given chunk
of text (i.e. within the given PangoItem). It calls the language engine of
the chunk (or the Unicode-based pango default break() if no language
engine exists) to fill the PangoLogAttr array which describes logical
attributes of the characters (is-line-break, is-char-break, etc.).

3. pango shape()

converts text chunk into glyphs, with proper positioning. It calls the
shaping engine of the chunck (or the default shaping which is currently
suitable for European languages) to obtain a PangoGlyphString, which
describes the information of the glyphs to render (code point, width, off-
sets, etc.).

3.2 Pango Engine Implementation

By the time this paper is written, the latest stable version of Pango is 1.2.5.
However, there are a lot of changes from this version in current CVS and devel-
opment versions. To be useful for new modules creation, our discussion below
shall be based on Pango 1.3.x series.

Pango engines are implemented in loadable modules which provide following
mandatory entry functions:

void script engine init(GTypeModule *module)

initializes the module – usually registers the types of the engines provided
in the module.

void script engine exit()

module clean-ups upon unloading.

void script engine list(PangoEngineInfo *engines, int *n engines)

lists information of all engines provided in the module. The engine infor-
mation is described as PangoEngineInfo struct, containing the engine
name, engine type (language/shaping), render type (for shaping engine
only), and the scripts (languages) it supports.

1This is a very rough classification. Obviously, there are further steps, e.g. line breaking,
alignment, justification. Discussing all of them here is out of localization interests.

5

struct _PangoEngineInfo
{

gchar *id;
gchar *engine_type;
gchar *render_type;
PangoEngineScriptInfo *scripts;
gint n_scripts;

};

Please see <pango/pango-engine.h> and <pango/pango-script.h> for
details.

PangoEngine *script engine create(const char *id)

creates a PangoEngine instance for the given ID. It should return NULL
for unknown ID.

In Pango 1.3.x, Pango engines are defined as a new type derived from either
PangoEngineLang or PangoEngineShape. You define a new engine by
extending the base type and overriding its virtual functions, as will be discussed
below.

3.3 Pango Language Engines

As discussed in §3.1.2, Pango language engine is called to determine possible
break positions in a chunk of text of a certain language. All Pango language
engines are instances of types derived from the PangoEngineLang base class.
The virtual function to override is:

void (*script_break) (PangoEngineLang *engine,
const char *text,
int len,
PangoAnalysis *analysis,
PangoLogAttr *attrs,
int attrs_len);

The task of the script break() function is to fill the given PangoLogAttr
array with attributes of every character in the text. The logical attributes for a
character are following flags:

struct _PangoLogAttr
{
guint is_line_break : 1;
guint is_mandatory_break : 1;
guint is_char_break : 1;
guint is_white : 1;

guint is_cursor_position : 1;

guint is_word_start : 1;

6

guint is_word_end : 1;

guint is_sentence_boundary : 1;
guint is_sentence_start : 1;
guint is_sentence_end : 1;

guint backspace_deletes_character : 1;
};

And the meaning of the flags are as follows:
Flag Description
is line break can break line in front of the character
is mandatory break must break line in front of the character
is char break can break here when doing character

wrap
is white is white space character
is cursor position cursor can appear in front of character
is word start is first character in a word
is word end is first non-word character after a word
is sentence boundary is inter-sentence space
is sentence start is first character in a sentence
is sentence end is first non-sentence character after a

sentence
backspace deletes character backspace deletes one character, not en-

tire cluster (new in Pango 1.3.x)

3.4 Pango Shaping Engines

As discussed in §3.1.2, Pango shaping engine serves the conversion of characters
in a text chunk of a certain language into glyphs, as well as their positioning
according to the script constraints. All Pango shaping engines are instances of
types derived from the PangoEngineShape base class. The virtual function
to override is:

void (*script_shape) (PangoEngineShape *engine,
PangoFont *font,
const char *text,
int length,
PangoAnalysis *analysis,
PangoGlyphString *glyphs);

The task of the script shape() function is to fill the given PangoGlyph-
String buffer with the converted glyphs information. To see what a shaping
engine needs to provide, let’s examine the structure of PangoGlyphString a
bit:

struct _PangoGlyphString {
gint num_glyphs;
PangoGlyphInfo *glyphs;
gint *log_clusters;

7

/*< private >*/
gint space;

};

In the structure, glyphs and log clusters are parallel arrays of num glyphs
elements, storing information of the glyphs sequence to render from left to right.
(So, for RTL scripts, the glyphs sequence is just reverted.) The glyphs array
describes the glyphs themselves, with their positionings, while the log clusters
maps the glyphs back to characters in the original text.

Each element of the glyphs array describes a glyph with PangoGlyphInfo
type:

struct _PangoGlyphInfo
{
PangoGlyph glyph;
PangoGlyphGeometry geometry;
PangoGlyphVisAttr attr;

};

where glyph is the glyph index within the font, geometry is the width and
positioning of the glyph, and attr describes additional visual attributes of the
glyph.

Glyph geometry of PangoGlyphGeometry contains following informa-
tion:

struct _PangoGlyphGeometry
{
PangoGlyphUnit width;
PangoGlyphUnit x_offset;
PangoGlyphUnit y_offset;

};

The x offset and y offset here describe the relative shifting of the glyph in
reference to previous glyph. So, you can adjust your glyph positioning here.

Finally, there is only one additional visual attribute of the glyph for the time
being:

struct _PangoGlyphVisAttr
{
guint is_cluster_start : 1;

};

As its name describes, is cluster start determines if the glyph is a cluster
starter (useful for Arabic, maybe).

References

[1] TLWG LibThai.
http://libthai.sourceforge.net/.

8

http://libthai.sourceforge.net/

[2] Theppitak Karoonboonyanan. Thai Input Method Implementations.
http://linux.thai.net/thep/th-xim/.

[3] GTK+ – The GIMP Toolkit.
http://www.gtk.org/.

[4] IIIMF Project.
http://www.openi18n.org/subgroups/im/IIIMF/.

[5] GObject Reference Manual.
http://developer.gnome.org/doc/API/2.0/gobject/.

[6] GTK+ Reference Manual.
http://developer.gnome.org/doc/API/2.0/gtk/.

[7] Pango.
http://www.pango.org/.

[8] Pango – Design Goals.
http://www.pango.org/design.shtml.

[9] Pango Reference Manual.
http://developer.gnome.org/doc/API/2.0/pango/.

9

http://linux.thai.net/thep/th-xim/
http://www.gtk.org/
http://www.openi18n.org/subgroups/im/IIIMF/
http://developer.gnome.org/doc/API/2.0/gobject/
http://developer.gnome.org/doc/API/2.0/gtk/
http://www.pango.org/
http://www.pango.org/design.shtml
http://developer.gnome.org/doc/API/2.0/pango/

	GTK.10em+ I18N Framework
	I18N or Multilingual?
	GTK.10em+ I18N Framework

	GTK.10em+ Input Method Modules
	GTK.10em+ Input Method Modules
	Client-Side Coding
	IM Implementation

	Pango Engines
	Pango Overview
	PangoLayout
	Middle-level Processing

	Pango Engine Implementation
	Pango Language Engines
	Pango Shaping Engines

